Sensing Location in the Pocket
Ulf Blanke, Bernt Schiele
Computer Science Department, TU Darmstadt, Germany

Goal
Recognition of location transitions in buildings by inertial motion sensing and relaxed requirements

Problem
How do we tell the sensor the user's heading?
What if the orientation of the sensor drifts?

Solution
Exploit the body motion determining the orientation of the sensor to the body and to get the heading of the user

Algorithm

(1) Preprocessing

Goal:
- Find relative orientation of the sensor to the body
- Use it as heading of the user

Given:
Global orientation vector and gyroscope values

Method:
For each timestamp t:

- **Step 1**
 PCA* of 3D-gyroscope values on a 1s-sliding window

 ![PCA Diagram]

 * Principal Component Analysis

- **Step 2**
 Select first Eigenvector as axis \(\omega(t) \)
 - Project \(\omega(t) \) onto ground plane
 - Calculate angle \(\alpha \) between \(\omega(t) \) and \(\omega(t-1) \)
 - Create normalized heading vector

Example
Calculation of a PCA for each window

Sequence of headings
Orientation of main principal component assuming constant speed

As for the hip, this works analogous for the hand.

(2) Classification

Goal:
Classified location transition

Given:
- Set of labeled location transition as training data
- Unknown location transition

Method:
K-Nearest Neighbor classifier on a rotation invariant correlation distance measure

Evaluation

Hardware
Xsens Inertial Measurement Unit

Data
Floorplan
Defined locations for data recording
- Single user
- 10 typical location transitions during office day
- 4 different orientations in the pocket

- In the hand
- While on the phone or texting
 - 70 sets in total

Results
Accumulated sequence of headings (trajectory)

Performance of predicting location destination

Acknowledgements: Ulf Blanke gratefully acknowledges the scholarship provided by the DFG research training group "Topology of Technology".